Dynamics of Forest Diversity
Funding Agency(ies):
French Institute of Pondicherry
Principal Investigator(s):
Dr. N. Ayyappan
Start Date : 
1990
Duration : 
Permanent plot monitoring study

Axis 1. of the Ecology Department /

Objectives:
 

Ecosystems worldwide are changing as a result of myriad anthropogenic processes viz., deforestation, fragmentation, hunting, changes in CO2 concentrations, increasing temperatures and altered rates of nitrogen deposition etc. It may be easy to measure these physical and chemical drivers with reasonable accuracy and precision. However quantifying possible ecological responses to these drivers is an extremely difficult task. Such effects are best perceived through long-term monitoring of permanent plots in ecological communities. The accumulating literature over the past two decades on the rates of tropical tree growth, mortality and recruitment showed significant changes in the structure and function of mature tropical forests by the close of the twentieth century. Notably tree turnover rates (Phillips 1996) and growth rates in the tropical forests have accelerated over the past decades (Laurence et al., 2004), which are consistent with the hypothesis of increased productivity caused by the rising concentrations CO2 (Lewis 2006). Contrastingly, Feely et al. (2007) documented decelerating growth rates of tropical tree species over the past two decades in the 50 ha forest dynamic plots in Panama and Malaysia. The French Institute of Pondicherry in collaboration with the Karnataka Forest Department, installed permanent sampling plots in the Kadamakal Reserve Forest and Pushpagiri Wildlife Sanctuary with the main objective to document, analyses and model forest dynamics.

The principal objectives were

  1. to gather baseline information on tree diversity in a logged forest and monitor post-logging forest dynamics,
  2. to assess tree diversity in a unlogged forest and monitor the natural forest dynamics,
  3. to compare the demographic processes across spatio-temporal scales in logged and unlogged forests,
  4. to describe the growth strategies of tree species according to their position at the adult stage in the canopy such as understorey, low-canopy, canopy or emergent species,
  5. to elucidate and modeling the ecological processes that may interact upon the distribution, abundance and growth of species across spatio-temporal scales in order to draw insights on diversity and coexistence of species in tropical forests,

to estimate the above ground biomass of tropical evergreen forest

Materials and methods:
 
 
 

The study area, Uppangala forest is situated in the Kadamakal Reserve Forest (Coorg district) at the foothills of the Western Ghats, located between 12° 33' N latitude and 75° 39' E longitude (Fig 1a). The elevation ranges between 400 and 600 m a.s.l. It belongs to the Dipterocarpus indicus-Kingiodendron pinnatum-Humboldtia brunonis type of wet evergreen forests and is a part of the West Coast Tropical Forests of Champion and Seth's classification. Uppangala receives slightly more than 5100 mm per year and the dry season lasts 4.5 months.

Methods:
 

Sample designs and censuses

In 1985-86, the French Institute of Pondicherry, in collaboration with the Karnataka Forest Department, installed the first set permanent sampling plots in the logged compartment (A; Fig. 1b) of low elevation wet evergreen forest of Kadamakal Reserve Forest to monitor the post-logging forest dynamics (ca. 8.5 trees ha-1 were logged). All trees ³ 10 cm gbh were inventoried, mapped, girth and crown dimensions measured in fourteen systematically established plots of 20 ´ 30 m. In addition, all stems ³ 2 m height were inventoried in six 5 ´ 5 m subplots. A total of 2,748 trees and saplings were recorded during the first census. All the plots were recensused (except 4 plots, which were recorded as burnt) in 1988 and 1993 for recruitment and mortality.

In 1989, a second set of sample plots were established in the unlogged compartment (B; Fig. 1c) to evaluate natural forest dynamics in a similar floristic zone (http://esapubs.org/archive/ecol/E092/115/metadata.htm). Five north-south oriented transects (viz., A, B, C, D and E) of 20 m wide, 180 to 370 m long and 100 m apart from each other were established to inventory trees  ³ 10 cm dbh. Collectively they represent a 3.12-ha systematic sample. Subsequently, additional rectangular sampling plots viz., H, R and S, which overlap with sampling area of the transects and represents an additional area of 1.95 ha, were established between 1990 and 1993 to study the forest dynamics according to topography (slope and more or less flat terrain). Totally 3,870 trees were identified, mapped and installed with dendrometric belt (precision of 0.2mm) for growth monitoring. The sampling area has been monitored for recruitment and mortality till to date.

Results:
 

Impact of logging on tree diversity: The logged compartment (A) had 347 trees and 54 species in 0.6 ha (1986) whereas the unlogged compartment (B) had 1891 trees and 88 species in 3.12 ha (1990). Initial stand density and basal area of the trees were slightly lower in the logged forest (578 stems ha-1; 34.8 m2 ha-1) than in the unlogged forest (606 stems ha-1; 39.3 m2 ha-1). Mean density and basal area for the 20 ´ 30 m samples of the two compartments (A and B) displayed no significant difference (t-tests, P>0.25). The expected number of species based on the rarefaction of both the compartments displayed almost similar trend (Fig 2a). An analysis of the growth of trees revealed that most of the trees had low girth increments (Fig. 2b).The mortality rate was more or less similar for the compartments (0.89% for A and 0.87% for B), which is lower than the rates observed in other tropical forests. Fig 2c and 2d depicts the mortality and recruitment rates of the two compartments. The impact of selective felling, 10 to 15 years after the harvest, revealed that those trees with girth of > 40 cm dbh belonging to lower and intermediate storey species had 4 times higher mortality in the logged compartment. Despite the general trend of a reduction in the difference between the density and the basal area of the two compartments, medium-term modification of the demographic processes among the various structural ensembles in the logged compartment, indicates that selective felling may not be sustainable in the long-term without consequences on the forest structure and composition.

Structure, composition and dynamics of unlogged forest:

The major finding are:
A total of 100 species with a mean tree density of 661 trees ha-1 and basal area of 43 m2 ha-1 were recorded. Just four species (viz., Dipterocarpus indicus, Humboldtia brunonis, Myristica dactyloides and Vateria indica) occupy four different storeys of the forest and dominate the forest stand in terms of density and basal area (collectively they account for greater than 50% of density and basal area; Fig 3a). Tree demography showed a decreasing trend immediately after establishment of the sampling plots and later it showed an ascending trend (Fig. 3b).  A model was proposed to predict the diameter increment in relation to the crown position using Dawkins crown position score (based on the indices of tree vigour, tree social status, local density and explicit spatial competition included) for the light demanding evergreen species Vateria indica (Fig. 3c). Diameter growth varied according to slope intensity and to tree size: the growth of large trees was clearly higher on steep slopes whereas the growth of small trees proved lower or similar (Fig. 3d). On the contrary, tree heights differed according to slope intensity: for a given diameter, trees were taller on gentle slopes than on steep slopes. The observed changes between gentle and steep slopes suggest differences at the tree level through a modification of its shape, but also differences in the major processes responsible for stand dynamics: competition, establishment and survival. Investigation on the growth strategies of the five dominant species showed significant differences concerning demographic parameters, mean and potential radial growth, differential allocation of biomass among tree parts, morphological plasticity and both supra-annual and seasonal rhythms of radial growth. Besides, the analyses showed a high intraspecific variability in radial growth, differential allocation of biomass between the different parts of a tree, and rhythms of radial growth. The results open new prospects for modelling the dynamics of forest tree communities, especially for a simulation-based exploration of how growth strategies contribute to species coexistence
.

Future plan:
 

The thorough monitoring of these plots is already an invaluable source of knowledge and understanding about the natural dynamics of the Western Ghats evergreen forests. The accuracy and reliability of the diameter measurements combined with the number of equipped trees make this dataset more or less unique in the tropics. The monitoring effort is obviously worth prolonging on a long-term basis in order to integrate the Uppangala Permanent Sample Plot (PSP) within the global networks of permanent plots. Such an effort is only conceivable as part of a close, long-lasting collaboration between KFD and FIP.  From the standpoint of fieldwork, an urgent need is to rationalize the sampling design, by extending the XY mapping of the trees over a rectangular large plots of about 10 ha, which will integrate most of the existing sampling transects and plots. This will also increase the potential uses of the PSP, for instance, studies such as analyses of spatial patterns of tree size classes and/or species.

References:
 

Phillips, O.L. 1996. Long-term environmental change in tropical forest: increasing tree turnover. Environ. Conserv. 23: 235-248.

Laurance, W. F., Oliveira, A.A. Laurance, S.G., Condit, R., Nacimento, H.E.M., Sanchez-Thorin, A.C. et al. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171-175

Lewis, S.L. 2006. Tropical forests and the changing earth system. Phils. Trans. R. Soc. Lond. B Biol. Sci., 361: 439-450.

        Feely, K.J., Wright, S. J., Supardi, M.N.N. Kassim, A.R. and Davies, S.J. 2007. Decelerating growth in tropical forest trees. Ecol. Lett. 10 : 461-469.

 
Main outputs:
 

Research articles

  1. Loffeier, M.E. 1988. Reconstitution après exploitation sélective en forêt sempervirente du Coorg (Inde). Acta Oecologia, Oecologia Generalis, 9(1): 69-87.
  2. Sinha A., Davidar P. 1992. Seed dispersal ecology of a wind dispersed rain forest tree in the Western Ghats. Biotropica, 24 (4): 519-526.
  3. Pascal, J.-P. 1995. Quelques exemples de problèmes posés à l’analyste et au modélisateur par la complexité de la forêt tropicale humide. Revue d’Ecologie (Terre et Vie), 50 : 237-249.
  4. Pascal, J.-P., Moravie, M.-A., Jouret, P.-O. & Auger P. 1995. Modelling forest dynamics: investigating spatial patterns. Mathematical Modelling and Scientific Computing. Pagination unknown.
  5. Pascal, J.-P. & Pélissier, R. 1996. Structure and floristic composition of a tropical evergreen forest in southwest India. Journal of Tropical Ecology, 12(2): 195-218. 
  6. Robert, S. & Salaün, P. 1996. Uppugala ou la difficulté d'être pionnier. Etude d'un village enclavé en forêt dans les Ghâts occidentaux (Inde). Espace Géographique, 2: 159-172.
  7. Elouard, C., Pélissier, R., Houllier, F., Pascal, J.-P., Durand, M., Aravajy, S., Gimaret-Carpentier, C., Moravie, M.-A. & Ramesh, B.R. 1997. Monitoring the structure and dynamics of a dense moist evergreen forest in the Western Ghats (Kodagu District, Karnataka, India). Tropical Ecology, 38(2):193-214.
  8. Moravie, M.-A., Pascal, J.-P. & Auger, P. 1997. Investigation of canopy regeneration processes through individual-based model: application to tropical rain forest. Ecological. Modelling, 104: 241-261.
  9. Gimaret-Carpentier, C., Pélissier, R., Pascal, J.-P. & Houllier, F. 1998. Sampling strategies for the assessment of tree species diversity. Journal of Vegetation Science, 9(2): 161-172.
  10. Pélissier, R. 1998. Tree spatial patterns in three contrasting plots of a southern Indian tropical moist evergreen forest. Journal of  Tropical Ecology, 14(1): 1-16.
  11. Pélissier, R., Pascal, J.-P., Houllier, F. & Laborde, H. 1998. Impact of selective logging on the dynamics of a low elevation dense moist evergreen forest in the Western Ghats (South India). Forest Ecology and Management, 105: 107-119.
  12. Moravie M.-A., Durand M., Houllier F. 1999. Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). Forest Ecology and Management, 119: 221-240.
  13. Pélissier, R. & Goreaud, F. 2001. A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation. Journal of Vegetation Science, 12(1): 99-108.
  14. Moravie, M.-A. & Robert, A. 2003. A model to assess relationships between forest dynamics and spatial structure Journal of Vegetation Science 14: 823-834.
  15. Robert, A. 2003. Simulation of the effect of topography and tree falls on stand dynamics and stand structure of tropical forests. Ecological Modelling, 167: 287–303.
  16. Robert, A. & Moravie, M.-A. 2003. Topographic variation and stand heterogeneity in a wet evergreen forest of India. Journal of Tropical Ecology 19: 709-716.
  17. Magnussen, S., Pélissier, R., He, F. & Ramesh, B.R. (2006) An assessment of sample-based estimators of tree species richness in two wet tropical forest compartments in Panama and India. International Forestry Review, 8(4): 417-431
  18. Pélissier, R., Pascal, J.-P., Ayyappan, N., Ramesh, B. R., Aravajy, S. & Ramalingam, S. R. (2011) Twenty years tree demography in an undisturbed dipterocarp Permanent Sample Plot at Uppangala, Western Ghats of India - Data Paper. Ecology, 92(6):1376.
  19. Ploton, P., Pélissier, R., Proisy, C., Flavenot, T., Barbier, N., Rai, S. N. & Couteron, P. (2012) Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecological Applications, 22(3): 993-1003.
  20. Ayyappan, N., Ramesh, B. R., Aravajy, S. and Jeyakumar, S. 2012. Plantae, Myrtales, Memecylaceae, Memecylon macrocarpum Thwaites (1864): Distribution extension and geographic distribution map. Check List 8: 280-282.

Dissertations- Ph. D.

Ph. D. theses

  1. Loffeier, M.E. 1988. Sylviculture et sylvigénèse en forêt sempervirente du Coorg (Sud-ouest de l’Inde). Thèse de Doctorat, Université Pierre et Marie Curie, Paris VI.
  2. Basu, P. 1994. Ecology of ground foraging ants in a tropical evergreen forest in Western Ghats, India. Ph. D. Thesis, School of Ecology & Environmental Sciences, Pondicherry University. 80 pp.
  3. Pélissier, R. 1995. Relations entre l’hétérogénéité spatiale et la dynamique de renouvellement d’une forêt dense humide sempervirente (Forêt d’Uppangala, Ghâts occidentaux de l’Inde). Thèse de Doctorat, Université Claude Bernard, Lyon 1. 236 pp.
  4. Salaün P. 1995. Représentations, utilisations et transformations de la richesse floristique dans quatre communautés forestières des Ghâts occidentaux. Thèse de doctorat, Université Paris VI, 237 pp.
  5. Durand, M. 1999. Apport de l’analyse architecturale des arbres dans l’étude de la structure des forets tropicales sempervirentes. Cas d’une foret dense humide du sud de l’Inde. Thèse de Doctorat, Université des Sciences et Techniques du Languedoc, Montpellier. 331 pp.
  6. Moravie, M.-A. 1999. Un modèle arbre dépendant des distances pour l’étude des relations entre la dynamique et la structure spatiale d’une forêt dense sempervirente. Thèse de Doctorat, Université Claude Bernard, Lyon 1.
  7. Robert, A. 2001. Modélisation de l’effet de la topographie sur la dynamique et la structure de peuplements forestiers hétérogènes. Thèse de Doctorat, Université Claude Bernard, Lyon 1. 220 pp.
  8. Madelaine-Antin, C. 2006-2009. Dynamique des peuplements forestiers tropicaux hétérogènes : variabilité intra et interspécifique de la croissance des arbres et trajectoires de développement en forêt dense humide sempervirente, dans les Ghâts occidentaux de l'Inde. PhD thesis, ED Sibaghe, Univ. Montpellier 2. 202 pp. [PDF]
  9. Le Bec, J. 2011-. Prise en compte de la variabilité intraspécifique dans la modélisation de la dynamique des peuplements forestiers hétérogènes et implications en termes de coexistence des espèces. PhD thesis AgoParisTech, Univ. Montpellier 2  – ongoing
  10. Jeyakumar, S. 2011- Biodiversity and above ground biomass of tropical evergreen forest across spatio-temporal scales - PhD thesis, Madurai Kamaraj University- ongoing

Dissertations- Masters and M.Phil.

  1. Ramakrishnan L. 1989. Stream fish community organization along habitat gradients in Uppangala Hole, Western Ghats, Karnataka. M.Sc. Dissertation, Pondicherry University, Salim Ali School of Ecology, 55 pp.
  2. De La Brière, B. 1990. Title unknown. Mémoire de DEA Analyse et Modélisation des Systèmes Biologiques, Université Claude Bernard, Lyon I, 30 pp.
  3. Sinha A. 1990. Seed dispersal ecology and recruitment patterns in Lophopetalum wightianum, a rain forest tree in the Western Ghats. M.Sc. Dissertation, Salim Ali School of Ecology, Pondicherry University, 77 pp.
  4. Cousin S. & Voyez A.-M. 1993. Dynamique d'une forêt dense humide sempervi­rente des Ghâts occidentaux (Inde) sur une période de sept ans. Conséquences d'une coupe sélective et des incendies. Mémoire de stage de 3ème année, Formation des ingénieurs forestiers, Ecole nationale du génie rural, des eaux et forêts, Nancy, 175 pp.
  5. Curtet L. 1993. Le processus de substi­tu­tion dans la régénération de la forêt dense tropicale humide d’Uppangala. Études préliminaires. Mémoire de DEA Analyse et Modélisation des Systèmes Biologiques, Université Claude Bernard, Lyon I, 30 pp.
  6. Derouet L. 1994. Étude de la variabilité structurale de huit populations d’arbres en forêt tropicale humide (Forêt d’Up­pangala, Inde). Mémoire de DEA Analyse et Modélisation des Systèmes Biologiques, Université Claude Bernard, Lyon I, 30 pp.
  7. Laborde H. 1994. Forêts sempervirentes des Ghâts occidentaux : bilan dynamique. Mémoire de fin d’étude, Mastère de sciences forestières, ENGREF (Nancy) & Institut français de Pondichéry, 82 pp.
  8. Aravajy S. 1995. Phenology of arborescent species in a tropical evergreen forest, Western Ghats (Uppangala), Karnataka. M. Phil. Dissertation, Centre for Post-Graduate Studies, Pondicherry, 41 pp.
  9. Moravie, M.-A. 1995. Modèle de dynamique de peuplements plurispécifiques inéquiennes (application à un peuplement forestier tropical d’Inde). Rapport technique. DEA Analyse et Modélisation des Systèmes Biologiques. Université Claude Bernard, Lyon 1. 31 pp.
  10. Dufour A. 1996. Analyse de la croissance des arbres en fonction des conditions de topographie et de voisinage. Rapport de stage de magistère, Université Claude Bernard, Lyon I, 31 pp.
  11. Krishnan, R.M. 1996. Dispersion pattern & sex ratio of Agrostistachys indicus. Thesis type unknown.
  12. Jagadeshan S. 1996. Regeneration potential of some important tree species in the tropical wet evergreen forests of Uppangala, Western Ghats. M.Sc. dissertation, Univ. of Pondicherry, Salim Ali School of Ecology, 32 pp.
  13. Riat E. 1997. Les Calamus d'une forêt sempervirente (Karnataka, Inde): rôle dans la sylvigenèse. Mémoire de D.E.S.S. university unknown.
  14. Lortet, J. 1998. Formation de groupes d’espèces homogènes pour la croissance dans la forêt dense humide d’Uppangala, Inde. Rapport technique, DEA Analyse et Modélisation de Systèmes Biologiques, Université Claude Bernard, Lyon 1.
  15. Robert, A. 1998. Modélisation de l’influence de la topographie sur l’asymètrie des houppiers et sur l’accroissement des arbres: application à une forêt dense tropicale (Forêt d’Uppangala – Inde). Rapport technique, DEA Analyse et Modélisation des Systèmes Biologiques, Université Claude Bernard, Lyon 1. 32 pp.
  16. Garcia, F. 1999. Identification et analyse de structures particulières occasionnant des dysfonctionnements de la dynamique dans une forêt dense humide du Sud de l’Inde. Rapport technique, DEA Analyse et Modélisation de Systèmes Biologiques, Université Claude Bernard, Lyon 1.
  17. Le Bec, J. 2011. Modélisation de la mortalité́ des arbres en foreêt tropicale humide : dispositif permanent d’Uppangala dans les Ghaâts occidentaux d’Inde. Master 2R Ecologie, Biodiversité, Evolution, Univ. Paris-Sud. 35 p. (Dir. R. Pélissier & B. Courbaud).
  18. Ploton, P. 2010. Analyzing canopy heterogeneity of the tropical forests by texture analysis of very-high resolution images. Double Master Degree in Nature and Forest Conservation, Ecole Supérieure d’Agriculture d’Angers & Univ. Wageningen, Pays-Bas. 88 pp. [PDF] (Dir. R. Pélissier, J. den Ouden & J. Clevers).
  19. Le Bec, J. 2010. Réflexion sur l'intégration de la diversité spécifique dans la modélisation de la dynamique des peuplements forestiers : Dispositif d'Uppangala dans les Ghâts occidentaux du sud de l'Inde. Mémoire de stage à l'étranger, Formation des Ingénieurs Forestiers, ENGREF, Nancy, 25 pp. (Dir. R. Pélissier).
  20. Flavenot, T. 2009. Biomass estimation for the tropical wet evergreen forest of the Western Ghats. Rapport de stage de 2ème année, Diplôme d'Agronomie Générale, AgroParisTech, Paris, 82 pp. (Dir. R. Pélissier & S. Chailloux).
  21. Renard, Q. 2009. Modeling of fire occurrences in the Western Ghats of India. Rapport interne, Institut Français de Pondicherry, 153 pp. (Dir. R. Pélissier).
  22. Hmimina, G. 2008. Mise au point et calibration d’un modèle de porosité de houppier et de régénération pour 5 espèces d’arbres des Ghâts Occidentaux. Rapport de stage de 2ème année, Diplôme d'Agronomie Générale, AgroParisTech, Paris, 54 pp. (Dir. R. Pélissier & S. Chailloux).

IFP publications

  1. Loffeier, E. 1989. Sylviculture et sylvigénèse en forêt sempervirente du Coorg (Sud-ouest de l’Inde). Institut Français de Pondichéry, Travaux de Section Scientifique et Technique, 26, 211 pp.
  2. Pélissier, R. 1997. Hétérogénéité spatiale et dynamique d’une forêt dense humide dans les Ghâts occidentaux de l’Inde. Institut français de Pondichéry, Publications du département d'écologie, 37, 148 pp.
  3. Elouard, C., Houllier, F., Pascal, J.-P., Pélissier, R. & Ramesh, B.R. 1997. Dynamics of the dense moist evergreen forests - Long term monitoring of an experimental station in Kodagu District (Karnataka, India). Institut français de Pondichéry, Pondy Papers in Ecology, 1, 23 pp.
  4. Houllier, F., Caraglio, Y., Durand, M. 1997. Modelling tree architecture and forest dynamics. A research project in the dense moist evergreen forests of the Western Ghats (South India). Institut français de Pondichéry, Pondy Papers in Ecology, 2, 37 pp.
  5. Durand, M. 1997. Architecture and growth strategy of two evergreen species of the Western Ghats (South India) Knema attenuata (Myristicaceae) and Vateria indica (Dipterocarpaceae). Pondy Papers in Ecology, 3, 39 pp.
  6. Elouard, C. & Krishnan, R.M.  1999. Assessment of forest biological diversity. A FAO training course. 2. Case study in India. Institut français de Pondichéry, Pondy Papers in Ecology, 5, 75 pp.

Papers in collective books

  1. De Franceschi, D. & Tissot, C. 1991. Spider webs as natural pollen traps: preliminary results. Pp. 63-63 In Proceedings of the 6th National Conference on Aerobiology, Institut Français de Pondichéry, Publications du département d’écologie n°30, Pondicherry, India.
  2. Pascal, J.-P., Pélissier, R., Loffeier, E. & Ramesh, B.R. 1998. Floristic composition, structure, diversity, and dynamics of two evergreen forest plots in Karnataka State, India. Chapter 29, pp 507-519 in Dallmeier, F. & Comiskey, J.A. (Eds), Man And the Biosphere Series Vol. 20, Forest biodiversity research, monitoring and modeling: conceptual background and old word case studies. Smithonian Institution Press, Washington D.C., UNESCO, Paris and The Parthenon Publishing Group.
  3. Moravie, M.-A., Pascal, J.-P. & Auger, P. 1999. Trends in forest modelling. Pp. ??? In Blasco, F. & Weill, A. (Eds.) Advances in Environmental and Ecological Modelling. Programme Environnement du CNRS & Elsevier, SAS.

Papers in Conferences

  1. Durand M., Caraglio Y., Houllier F. 1995. Architecture d’un arbre à métamorphose et ses variations selon le milieu : l’exemple de Vateria indica L. (Dipterocarpaceæ). Poster, 3ème colloque international L’arbre (Montpellier, France, 11-16/09/95).
  2. Gimaret C., Pélissier R. & Pascal J.-P. 1996. Estimation et variations de la richesse et de la diversité spécifiques en forêt sempervirente humide. Poster, Symposium Biodiversité et fonctionnement des écosystèmes (12-14/06/96), Ecole Normale Supérieure, Paris.
  3. Madelaine, C., Pélissier, R., Pascal, J.-P., Ramesh, B. R., Aravajy, S., Ramalingam, S. & Couteron, P. 2007. Long-term monitoring of the dynamics of a primary evergreen forest in the Western Ghats of India: Results and prospects. Poster presented at the Inaugural Conference of the Asian Chapter of the Association for Tropical Biology and Conservation "Averting biodiversity Meltdown in the Asian tropics". GRT Temple Bay, Mahabalipuram, India, 6th-8th March 2007.
  4. S. Jeyakumar, K. Rajarathinam, N. Ayyappan. Study of the natural restoration in the selectively logged evergreen forests at Uppangala, central Western Ghats. In "Biodiversity Asia 2012: Science, Policy, and Governance", The 2nd Asia Regional Conference of the Society for Conservation Biology – Asia Section, August 7-10, 2012, JN Tata Auditorium, IISc Campus, Bengaluru (Bangalore), India
  5. S. Jeyakumar, K. Rajarathinam, N. Ayyappan. Ecological inventory of tree species in the lowland dipterocarp forest at Uppangala, central Western Ghats. In "International Symposium and XXII Annual conference of Indian Association for Angiosperm Taxonomy on Innovative Prospects in Angiosperm Taxonomy" (ISIPAT-2012) October 28-30, 2012, Sant Gadge Baba Amravati University, Maharastra, India.
  6. S. Jeyakumar , K. Rajarathinam and N. Ayyappan, 2013. Diversity and distribution of ethano-medicinal tree species from central Western Ghats, Karnataka. In "Emerging trends in medicinal plants and herbal products", December 12-13, 2013, VHNSN College, Virdhunagar.

 

Staff ( IFP & External )

RAMESH B.R., Researcher
AYYAPPAN N., Researcher
ARAVAJY S., Ingénieur d’études
BARATHAN N., Technical assistant
MOREL J., Doctorate
HAMROUNI A., International volunteer